مجموعه ی دورترینی در فضاهای متریک
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده ریاضی
- نویسنده راضیه ساریخانی
- استاد راهنما حمید مظاهری تهرانی سیدمحمد مشتاقیون
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1392
چکیده
در اینجا به معرفی مجموعه های دورترینی و بطوریکتا دورترینی می پردازیم. در فصل اول یک سری از تعاریف را آورده ودر فصل 2 به معرفی مجموعه های دورترینی و بطوریکه دورترینی پرداخته. در فصل های بعد به معرفی نگاشت دورترین نقاط بعد f-دورترین نقاط و در پایان با دورترین نقاط در فضاهای متریک فازی مردازیم.
منابع مشابه
فضاهای متریک مخروطی و تفاوت آنها با فضاهای متریک معمولی
بعد از معرفی فضاهای متریک مخروطی، دیدگاه های متفاوتی در خصوص این که آیا این فضاها تعمیمی واقعی از فضاهای متریک معمولی هستند یا خیر مطرح شده است. در این خصوص در مقالات متعددی به صورت پراکنده قضایایی از قبیل متریک پذیری یا معادل بودن این فضاها با فضاهای متریک معمولی مطرح شده است. در مقابل نیز برخی مقالات، با ارائه قضایا و مثال هایی سعی در نشان دادن تفاوت های ذاتی فضاهای متریک مخروطی با فضاهای متر...
تعمیم هایی از قضایای نقطه ی ثابت در فضاهای متریک
در این رساله ابتدا قضیه ی نقطه ی ثابت ندلر و چند تعمیم از آن بیان شده است. سپس مفهوم انقباض تعمیم یافته را برای نگاشت های مجموعه مقداری تعریف کرده و با بیان چند قضیه، وجود نقاط ثابت برای این نگاشت ها را مورد بررسی قرار می دهیم. همچنین یک شمول دیفرانسیل هایپربولیک را به کمک این قضیه ها حل می کنیم. در ادامه چند قضیه ی نقطه ی ثابت جدید برای نگاشت های مجموعه مقداری تحت شرط انقباضی جدید اثبات می کنی...
15 صفحه اولقضایای نقطه ی ثابت در فضاهای متریک مخروطی
در بسیاری از موارد، استفاده از ریاضیات به معنای حل معادله می باشد. با ایم هدف، مهم تریم مساله ای که باید مورد توجه قرار گیرد آن است که آیا معادله ی مورد نظر جواب دارد یا خیر؟ برای مثال قضیه ی بولتزانو وجود حداقل یک ریشه را برای توابع پیوسته ای که روی یک بازه تعریف شده و در دو انتهای بازه مقادیر مختلف العلامه ای را اختیار می کنند، ایجاب می کند. امروزه، آنالیز غیرخطی و آنالیز غیر محدب کاربردهای ...
15 صفحه اولمباحثی در فضاهای متریک مدولار
نظریه ی مدولارها روی فضاهای خطی در سال 1950 به وسیله ی ناکانو ارائه شد سپس در سال 1959 توسط یامومورو توسعه داده شد. به علاوه توسعه ی کاملی از این نظریه ها توسط ارلیخ و لوگزامبورگ انجام شد. در سال 2008 چیستیاکوف نظریه ای از فضاهای متریک مدولار ارائه داد. در حال حاضر نظریه مدولارها کاربرد گسترده به ویژه در مطالعه ی فضاهای ارلیخ دارد. این پایان نامه مشتمل بر سه فصل است. در فصل اول مفاهیم و قضایای...
قضایای نقطه ثابت برای انقباض های مجموعه مقدار در فضاهای متریک کامل
هدف بررسی قضایای نقطه ثابت برای نگاشت های مجموعه مقدار براساس تعاریف انقباضی، و موضعا انقباضی است. در این پایان نامه به بررسی چهار زاویه مختلف نگاه به تعمیم موضعا انقباضی بودن برای یک نگاشت مجموعه مقدار و شرایطی که تحت آن به نقطه ثابت می رسیم پرداخته ایم.
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023